数据矿工学习-情感分析框架DeepEmo论文简析 wengJJ NLP/论文简析 发布于:2018年6月20日 来自台湾国立清华大学的Elvis Saravia等研究人员提出了一种基于图论(graph-based)的机制来提取丰富情感(rich-emotion)的相关模式(pattern),用来加强对语料库的线上情感表达进行深入分析。论文实验结果表明,所提出的情感分析框架DeepEmo比目前大多数的情感分析框架的F1-score都要高(仅次于Volvoka(2016)),而且其提出的富集模式(enriched patterns)也被证实了具有很高的领域适用性。 阅读全文